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We outline the qualitatively different physics behind charging-induced current asymmetries in molecular
conductors operating in the weakly interacting self-consistent field �SCF� and the strongly interacting Coulomb
blockade �CB� regimes. The SCF conductance asymmetry originates in the asymmetric shifts of the closed-
shell molecular conducting levels, driven by unequal mean-field potentials for positive and negative biases. A
very different current asymmetry arises for CB due to the unequal number of open-shell excitation channels at
opposite bias voltages. The CB regime, dominated by single charge effects, typically requires a computation-
ally demanding many-electron or Fock-space description to do justice to its complex excitation spectrum.
However, our analysis of molecular CB measurements reveals that many novel signatures can be explained
using a simpler orthodox model that involves an incoherent sum of Fock-space excitations and hence treats the
molecule as a metallic dot. This also reduces the complexity of the Fock-space description by including charge
configurations alone, somewhat underscoring the richness of its electronic structure while retaining the essen-
tial single charge nature of the transport process. The inclusion of electronic structure with well-resolved Fock
space excitations is, however, crucial in some notable examples.
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I. INTRODUCTION

Ever since its inception,1 molecular rectification has re-
mained of great scientific interest. While rectification could
arise from intrinsic structural asymmetries, many
experiments2–5 exhibit pronounced asymmetries in current-
voltage �I-V� or conductance-voltage �G-V� characteristics in
relatively symmetric molecules unequally coupled to con-
tacts. There are two classes of such asymmetries. For mol-
ecules strongly bonded with contacts, comparable current
levels are reached over unequal voltage ranges �Fig. 1�a��,
leading to prominent conductance asymmetries.2 The asym-
metry arises from the different charging energies that gener-
ate unequal mean-field potentials for opposite bias voltages.6

Reducing the contact-molecular couplings drives the system
into Coulomb blockade �CB�, where even the heights of the
intermediate open-shell current plateaus are asymmetric7

�Fig. 1�b��. This asymmetry has a different physical origin
rooted in its many-body excitations, driven by the unequal
number of discrete spin addition and removal channels at
opposite bias. It is thus clear that the physics of rectification
can depend sensitively on the strength of the electron-
electron interaction.

The nonequilibrium Green’s function �NEGF� formalism
is widely established for quantum transport in the self-
consistent field �SCF� regime8 for a diverse variety of mate-
rials from nanoscale silicon transistors to nanowires, nano-
tubes, and spintronic elements. The ability to incorporate
accurate quantum chemistry9,10 through averaged potentials
makes the NEGF-SCF scheme particularly attractive. How-
ever, this approach does not readily translate to the CB re-
gime, even qualitatively.11–13 While this limitation is well
recognized by the quantum dot community,14,15 it is rela-
tively unappreciated in the molecular electronics world that

has frequently invoked “first principles” theories based on
restricted or unrestricted SCF potentials, even to address CB
problems.16–19 The CB regime, observed in molecules with
weak contact coupling,3–5 manifests clear signatures of
single-electron charging, such as suppressed zero-bias con-
ductances and abrupt jumps in current. The inherent diffi-
culty in using the SCF theory for these systems arises from
the fact that the open-shell current levels depend on full ex-
clusion statistics in its many-body Fock space. Even for a
minimal single-orbital model, it is easy to establish that
while the open-shell current plateau widths depend on the
correlation strengths, their heights are independent of the in-
teraction strength, and in that sense, universal—a feature that
even spin unrestricted SCF models fail to capture.11 Trans-
port in CB maps onto a rather difficult combinatorial prob-
lem in Fock space that cannot readily be projected a priori
onto its one-particle SCF potential, even phenomenologi-
cally.

A proper treatment of the Fock-space excitations requires
solving a set of master equations directly in the Fock space
of the molecular many-body Hamiltonian.11,14,15 A significant
penalty is the increased computational cost that requires sac-
rificing the quantum chemical sophistication of ab initio
models, in lieu of an exact treatment of the Coulomb inter-
action in simpler phenomenological models. Within such an
exactly diagonalizable model, one can capture transport fea-
tures which are quite novel and unique to the CB regime,
such as inelastic cotunneling, gate-modulated current rectifi-
cation, and Pauli spin blockade.11,20,21 The presence of con-
tact asymmetry makes these features even more intriguing,
while somewhat simplifying the analysis by driving the sys-
tem into equilibrium with the stronger contact.

The inadequacy of SCF models has already been eluci-
dated in our earlier works.11,12 The main focus of this paper
is the elucidation of its specific experimental consequences
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on current rectification frequently observed in molecular
dots. In fact, CB asymmetry generates qualitatively different
characteristic features compared to SCF asymmetry. We be-
gin by contrasting their separate physical origins and illus-
trating the crossover from one mechanism to the other in the
presence of artificial broadening of the dot levels. A distinct
feature of a Coulomb blockaded multiorbital molecular dot is
its rich spectrum of electronic excitations that yield unique
recognizable transport signatures,11 consistent with
experiments,3,5,22 such as a gate-dependent exchange of con-
ductance peak asymmetries. We find that the specific identity
of these excitations may not be relevant in many cases, al-
lowing us to invoke simpler orthodox models23–25 that ignore
individual excitations in favor of an incoherent sum. Such a
coarse-grained CB model can adequately explain multiple
experiments,3,5 considerably reducing the computational cost
associated with exactly diagonalizing a many-body Hamil-
tonian and solving rate equations in its associated Fock
space. However, as finally we point out, there are notable
exceptions involving specific slow excitation modes or trap
states26–28 that would require careful attention to well-
resolved Fock space spectra.

II. ORIGIN OF ASYMMETRIES—SELF-CONSISTENT
FIELD VS COULOMB BLOCKADE

As mentioned earlier, there are two distinct physical limits
of transport. In the SCF limit, contact broadenings � are
greater than or comparable to the single electron charging U.
In the opposite CB limit, U�� and single-electron charging
dominates. Conductance asymmetries in both regimes of

transport have been experimentally observed in molecular
conduction. While there are ways to handle each regime
separately, treatments are inherently perturbative, with an ap-
proximate treatment of correlation �in terms of U /�� for the
SCF regime and an approximate treatment of broadening �in
terms of � /U� for the CB regime. The lack of a small pa-
rameter in the intermediate coupling regime �U��� makes
the exact treatment of transport, even for a simple model
system, potentially intractable.12

The origin of asymmetric I-V’s can be easily elucidated
with a minimal model for current conduction through a spin
degenerate, filled �closed-shell� molecular doublet. We as-
sume equal capacitive couplings but unequal resistive cou-
plings to the contacts so that the molecular levels shift by
one-half of the applied Laplace potential and the current on-
sets arise symmetrically around zero bias. In the SCF limit,
contact asymmetry results in equal currents adiabatically
smeared out over a larger voltage width along one bias di-
rection than the other. This charging based asymmetry has
been experimentally seen2 and can be intuitively rationalized
as follows. Consider a spin degenerate energy level, for ex-
ample, a highest occupied molecular orbital �HOMO�, that is
fully occupied at equilibrium. For asymmetric contact cou-
plings �L��R, where �L and �R are bare contact couplings
to molecular levels, charge addition dominates for positive
bias on the right contact and removal for negative bias, as
shown in Fig. 2�a�. For a positive bias, the energy level is
maintained at neutrality by the dominant left contact and the
current flow through the level is determined by the removal
rate. Along the reverse bias, in contrast, charge removal by
the left contact drives the system away from neutrality to-
ward a net positive charge, whose Coulomb cost floats the

FIG. 1. �Color online� Experi-
ments showing �a� comparable
currents reached over unequal
voltage widths �Ref. 2� �reprinted
with permission� in the SCF limit
and �b� unequal currents reached
over comparable voltage widths in
the CB limit �Ref. 7� �reprinted
with permission�.
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level out of the bias window. This means that a larger bias is
needed to fully conduct through the level, dragging out I-V
in that direction. The direction of asymmetry flips if conduc-
tion is instead through the lowest unoccupied molecular or-
bital. Notably, the maximum currents and their onsets are the
same, but their complete saturations are delayed differently
for opposite bias directions.

The origin and manifestation of current asymmetry is
qualitatively different in the CB limit, where charge addition
or removal is abrupt and in integer amounts. Given the asym-
metric contact couplings ��L��R�, the left contact adds �re-
moves� an electron as soon as the right contact removes
�adds� it, so that the rate determining step becomes the dy-
namics of the weaker right contact. For a positive bias,
charge removal can happen in two ways, from ↑↓ to ↑ and ↓,
while for opposite bias the right contact can add a spin in
only one way, either ↑ or ↓ to ↑↓. This scheme of charge
transfer �Fig. 2�b�� leads to twice the current step for positive
bias than for the negative bias.7,15

An important issue is whether one can smoothly transition
from the CB to the SCF asymmetry by progressively increas-
ing the broadening. While this is hard to do exactly, owing to
the inherent difficulty of broadening many-particle states,29

for the purpose of illustration, one can add broadening to
various degrees approximately.30 We choose to do this by
increasing the temperature, which we incorporate through

Boltzmann factors in the many-body occupancies.31 As seen
in Fig. 2�c�, this approximate treatment morphs the CB
asymmetry into the very different version corresponding to
the SCF limit. For a negative bias on the weaker contact,
“shell filling”32 of the HOMO level with a net positive
charge creates a CB plateau that is missing in its positive
bias “shell-tunneling” counterpart. Upon strong coupling
with contacts, this one-sided CB plateau merges into a larger
broadening manifold, leading to the postponed conduction
seen in the SCF limit. It is worth mentioning though that the
crossover described is only qualitative and is inaccurate at
higher bias values, underscoring the inadequacy of thermal
effects and other phenomenological broadening approxima-
tions for correlated systems, particularly near the equal cou-
pling, nonequilibrium limit which combines shell tunneling
with shell filling.

III. COULOMB BLOCKADE FORMALISM: FOCK SPACE
VS ORTHODOX

In this paper, we focus mainly on the CB regime. Here,
one needs to keep track not only of various ground state
charge configurations but also of various excitations within
each charge state. Exactly diagonalizing the molecular many-
body Hamiltonian yields a large spectrum of closely spaced
excitations in every charged molecular configuration. The

FIG. 2. �Color online� Crossover between asymmetries. An SCF current asymmetry arises for �L��R when under positive bias the left
contact maintains the HOMO level at neutrality during conduction, while for negative bias, the emptied level is expelled from the bias
window by �a� charging and �c� creating unequal plateau widths for opposite bias �stars�. In the CB regime, however, charge removal by the
negatively biased right contact is rate determining and occurs in two different ways, while for positive bias, �b� charge addition is rate
determining and can occur in only one way. �c� This leads to an asymmetry in plateau heights �bold solid line�. While the transition between
the two limits is hard to model accurately, �c� a phenomenological broadening through an artificial enhanced temperature circles� illustrates
how the open-shell CB plateau morphs into a higher effective broadening, restoring the SCF result in the limit of large broadening.
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current is obtained by solving a set of master
equations14,15,33,34 for the probabilities Pi

N of each N electron
many-body state �N , i�, giving us

I = �
e

�
�
N,ij

�R�N,i�→�N�1,j�
�1� Pi

N − R�N�1,j�→�N,i�
�1� Pj

N�1� , �1�

where R�1� describes the left contact contributions to the
many-body transition rates R. The computational complexity
arises from the need to keep track of not only charge N but
also all configurational degrees of freedom i. The orthodox
model arises by integrating all excitations in an incoherent
way,23–25,35,36 giving us

I = �
e

�
�
N

�RN→N�1
�1� − RN→N�1

�1� �PN �2�

= �
e

�
�
N

�RN→N�1
�2� − RN→N�1

�2� �PN. �3�

The considerably simplified transition rates now depend
only on the transition energies that arise just from simple
electrostatics in terms of C1,2,G and C� �capacitances of con-
tacts 1, 2, and gate and the total capacitance, respectively�.
For a strong asymmetry of contact resistances �R2�R1� at
low temperatures, the ensemble distribution of electrons on
the middle electrode can be described by a delta function
�n,n0

, where n0 is the most probable number of electrons.25

The delta function probability density reduces Eq. �3� to
I�VD ,VG�=e /��Rn0→n0�1

�2� −Rn0→n0�1
�2� �. For low bias, the Cou-

lomb cost of electron tunneling across the contacts is high,
resulting in a zero-conductance region limited by the positive

and negative threshold voltages VCB
�+� and VCB

�−�, respectively
�Fig. 3�. Outside of this region, the transition rates simplify
to

I�VD,VG� =
1

R2C�
	− �n0e − Q0� + C1VD − CGVG

−
e

2
sgn�VD − VCB

�−��
 , �4�

where sgn denotes the Heaviside sign function and n0 is the
equilibrium fractional offset charge.25 The linearity of Eq. �4�
with drain voltage is only interrupted when new levels enter
into the bias window, causing n0 to change by �1, which in
turn causes the current to “jump” in value.

We thus have an intuitive picture of how I−VD curves are
constructed in the orthodox theory. For given system param-
eters �R, C, etc.� and gate voltage, there is a set of I�V ,n0�
curves for different values of n0, as dictated by Eq. �4� �e.g.,
dashed lines in Fig. 3�. As a drain voltage is applied, I�V�
remains on the I�V ,n0=0� curve until n0 changes, at which
point I�V� jumps to the I�V ,n0= �1� curve. Generalizations
of Eqs. �5� and �6a� from Ref. 25 establish the Coulomb
blockade threshold voltages,37

VCB
��� = C1

−1��e/2 − n0e + Q0 + CGVG� , �5�

as well as the transition voltages between n0 and n0�1,

Vn0

��� = C2
−1��e/2 + n0e − Q0 − CGVG� . �6�

In Fig. 3, for example, we can see that the CB threshold
voltage is reached at 10 mV, before transition at 15 mV,
resulting in a linear onset of the current. If, however, �Vn0

����
were smaller than �VCB

����, then there would be a jump onset at
the zero-conductance region threshold.

Let us now compare the orthodox and Fock-space model
approaches to transport in the CB regime and apply them
within the context of experimental trends.

IV. COULOMB BLOCKADE ASYMMETRIES: GATE-
DEPENDENT RECTIFICATION

One of the simplest consequences of asymmetric contact
coupling is rectification; in other words, a bias direction de-
pendence in the I-V characteristics. To calibrate with experi-
ments, we not only concern ourselves with rectification per
se but also with how it is influenced by a gate. In fact, ex-
periments showcase gate dependences of the rectification
properties that are arguably more interesting than the rectifi-
cations themselves. These experiments �see, for example,
Refs. 3 and 4� show a gate-dependent shift of conductance
peak onsets, as well as a gate modulation of the correspond-
ing conductance peak heights. In addition, there is a promi-
nent exchange in conductance peak asymmetry for gate volt-
age variations about the charge degeneracy point in the
stability diagram.4 We will argue that much of the relevant
physics has to do with the way the molecule accesses various
electronic excitations under bias, which would require going
beyond our one-orbital model to a multiorbital system.
Charge addition or removal causes jumps in I-V, while
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FIG. 3. �Color online� Illustration of orthodox model: The or-
thodox theory parameters define a set of I�V ,n0� curves, represented
by the dashed lines. Starting with n0=0, the current follows the
I�V ,n0=0� curve under bias until n0 changes. If �VCB�	 �Vn0=0�,
as is the case here, the current will rise linearly out of the zero-
conductance region; otherwise, there will be a jump onset. For
this simulation, R1=10 M
, R2=6 G
, C1=8 aF, C2=5.3 aF,
Q0=0, and T=2 K.
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charge redistribution �excitation� leads to closely spaced pla-
teaus that merge onto a linear ramp when summed incoher-
ently. In the rest of the section, we will explain how each CB
model �Fock space and orthodox� successfully captures the
gate modulation of the asymmetric I-V’s, as summarized
schematically in Figs. 4 and 7.

A. Gate modulation of current onsets and heights

The onset of conduction is determined by the offset be-
tween the equilibrium Fermi energy and the first accessible
transition energy, marked �00

Nr in Fig. 4 �following the nomen-
clature in Sec. II�. This can be modified by varying the gate
voltage, thereby accounting for the variation in conductance
gap with gate voltage �Fig. 4�c��. While the current step and
corresponding conductance peak are generated by this
threshold transition, there follows a quasi-Ohmic rise in cur-
rent, leading to a subsequent constant nonzero conductance
in the conductance-voltage �G-V� characteristics. This fea-
ture arises from the sequential access of several closely
spaced transport channels under bias due to excitations
within the N and N−1 electron subspaces.11 While net charge
addition and removal come at large Coulomb prices, excita-
tions involve charge reorganization within the Fock space
that cost much smaller correlation energies.

The presence of multiple orbitals generates several con-
figurations of excited states, creating more accessible trans-

port channels within the bias window. For example, in Fig.
4�a�, conduction occurs simultaneously via the �10

Nr and �00
Nr

removal channels. �10
Nr corresponds to a transition between

the first excited state “1” of the N-electron neutral species
and the ground state “0” of the N−1 electron cationic spe-
cies. We show four possible configurations corresponding to
the transport channel �10

Nr and the corresponding I-V �Fig.
4�b��. Increasing the gate voltage increases both the thresh-
old for current conduction and the number of such excited
state channels accessed by the contacts, thereby altering the
height of the corresponding conductance peak with gate volt-
age �Fig. 4�c��.

The previous paragraph illustrates the origin of gate-
modulated current as rationalized by the Fock-space CB
model. One can also explain this within the simpler orthodox
model, which ignores the identities of the resolved excita-
tions by incoherently summing them. Under the approxima-
tions of contact asymmetry and low temperature, the rate
RN→N�1

�j� is linear in the transition energies �Ej
� that increase

with drain voltage. With increasing gate voltage, one needs a
larger corresponding drain bias to overcome the zero-
conductance regime. At this higher drain voltage, the cou-
pling has a greater value and, consequently, the current mag-
nitude is larger. Physically, the drain voltage dependence of
the coupling represents a linear approximation of the excita-
tion spectra. Even though the orthodox model indiscrimi-
nately sums the excitations within the N and N−1 subspaces,
the fact that it captures them at all allows it to qualitatively
capture the modulation of current height.

Figures 5�a� and 6�a� show the experimental evidence of
gate modulation of current onsets and heights. Figure 5�a�
shows an experiment for which the negative bias onset is set
by moving from the N to N−1 electron subspace, while the
positive bias onset starts where the N electron excitation

FIG. 4. �Color online� Origin of peak asymmetry and variation
with gate voltage. �a� For gate voltages that place the contact Fermi
energy 
F in the N electron blockade region, the levels align such
that 
F��00

Nr. A state transition diagram shows the addition and
removal of up �down� spins resulting in transitions �00

Nr �bold double
arrow� between ground states of neutral and positively charged spe-
cies �light orange�. Also shown in the state transition diagram are
transitions �dashed double arrow� between various configurations of
neutral excited state �deep orange� and positively charged ground
state, labeled �10

Nr. �c� The resulting I-V shows clear asymmetry in
the peak height due to there being more ways to add an electron. �c�
Increasing gate voltage increases the number of excitations avail-
able, giving a pronounced �d� current height modulation with gate
voltage. The inset shows the corresponding I-V characteristics
�Refs. 3, 4, and 11�.

FIG. 5. �Color online� Experiment from Park et al. �Ref. 3�
showing gate-rectification properties in the Coulomb blockade re-
gime: �a� experimental traces �reprinted with permission�, �b� ortho-
dox fit with parameters C1=0.624 aF, C2=0.486 aF, CG

=0.0708 aF, R1=1 M
, R2=75 M
, Q0=−0.05e, and T=2.2 K,
and �c� fit from Fock-space model.
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spectrum moves into the bias window. Figures 5�b� and 5�c�
show the abilities of both the orthodox model and the Fock-
space model to capture the gate-modulated features of the
experiment. Figure 6�a� shows a similar experiment with
slightly more complex features. Curves d–h show the same
negative bias onset, as seen in Fig. 5, but as the gate voltage
is further decreased, the negative onset changes to a linear
onset, representing access to the N electron excitation spec-
trum. The positive bias shows that decreasing gate voltage
brings the N+1 level closer to the bias window. For curves
a–c, the positive bias type consequently becomes a jump
onset. In spite of these new degrees of freedom that must be
captured, the orthodox theory works quite effectively, as seen
in Fig. 6�b�. It is worth noting that the x axis in Fig. 6 is VSD,
rather than VDS, which must be accounted for when using
Eqs. �5� and �6� of the orthodox theory.

Mathematically, it is straightforward to understand the de-
pendence of current height on gate voltage within the ortho-
dox theory. Using the experiment of Park et al.3 �Fig. 5�a�� as
an example, we see that there is a jump onset for negative
bias voltages. Therefore, �Vn0

�−��	 �VCB
�−��. At Vn0

�−�, the I-V tran-
sitions to the I�V ,n0=−1� curve. So, to find the current
height at the onset voltage, we can use Eq. �4� for n0=−1.
Inserting Vn0

�−� for VD, one finds

I�Vn0

− � = −
C1 + C2

R2C2C�

�Q0 + e/2 + CGVG� . �7�

Clearly, the magnitude of the current at the onset voltage
increases with gate voltage �Fig. 5�b��, matching the experi-
mental result seen in Fig. 5�a�.

The accuracy of the orthodox simulation would imply at
the very least that individual excitations do not play an im-
portant role in the transport characteristics seen. Because the
experimental I-V has a strongly linear dependence on drain
voltage seen in Eq. �4�, it seems that the experiments may
have measured transport through a metallic particle, which
has a relatively featureless density of states, as assumed in
the orthodox model.

B. Peak exchange

Experiments exhibit a characteristic flipping of conduc-
tance peak asymmetry around the charge degeneracy point A
in the stability diagram �Figs. 7�a� and 7�b��. Figures 7�e�

and 7�f� show typical calculated G-V’s in this regime, featur-
ing conductance peak asymmetries with respect to voltage
bias, arising due to asymmetric contact couplings ��L��R�.
Within the Fock-space model, this can be explained by enu-
merating the channels for adding and removing electrons un-
der bias �Figs. 7�b� and 7�d��, with the weaker right contact
once again setting the rate limiting step. The dominant trans-
port channel �00

Nr corresponds to electronic transitions be-
tween the neutral and cationic ground states,11 states which
SCF theories do take into account. In the CB limit, however,
there are additional electronic excitations that are accessible
with very little Coulomb cost. These states are responsible
for the peak asymmetry exchange observed in these experi-
ments, as we will now explain.

The origin of this asymmetry can be understood with a
simple model system: in our case, a quantum dot with eight
spin-degenerate levels and N=4 electrons in its ground state.
When the Fermi energy lies to the immediate right of the
charge degeneracy point, as shown in Fig. 7�a�, only transi-
tions between the N and N−1 electron states �4 and 3� are
allowed, with the weaker right contact setting the rate-
limiting step. For positive bias on the right contact, an elec-
tron can be removed from the four-electron to the three-
electron ground state in two ways �Fig. 7�b��. For a negative
bias, however, the electron removed by the left contact can
be replenished by the right contact back into the four-
electron ground state, and also into one of many possible
excited states �i0

4r=Ei
4−E0

3 �i�0�. Since there are more ways
to bring the electron back �six shown here�, the conductance
is larger for negative bias �Fig. 7�e��. The situation changes
dramatically for a different position of the Fermi energy �Fig.
7�c�� in the stability diagram lying to the left of the charge
degeneracy point A with three electrons at equilibrium. For a
positive bias, the right contact adds an electron from the
three- to the four-electron ground state, while for a negative
bias, it returns it to the jth three-electron excited state
through transitions �0j

4r=E0
4−Ej

3. Now, there are more ways to
remove than add a charge �Fig. 7�d��, so that the asymmetry
flips �Fig. 7�f��.

Analogous to the Fock-space model, the orthodox model
also captures gate-dependent peak exchange, in spite of its
approximate treatment of excitations. The origin of the
asymmetry is once again the transition between the N to N
−1 electron regimes. In Fig. 3, we can see that such a change
results in a jump onset that has a much higher conductance

FIG. 6. �Color online� Asym-
metric CB results showing �a� ex-
periment �Ref. 5� �reprinted with
permission� and �b� orthodox
theory with parameters C1

=3.70 aF, C2=3.24 aF, CG

=0.061 aF, R1=2 M
, R2

=210 M
, Q0=0.175e, and T
=4.2 K.
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value than a linear onset. Moving from the I�V ,n0� curve to
the I�V ,n0−1� curve, therefore, essentially captures the ex-
citations of the N−1 electron spectrum that are pivotal to the
argument in the preceding paragraph. The fact that the con-
ductance peak switches across zero bias only means that the
zero-bias state of the system changes from N to N−1 elec-
trons, which the orthodox method clearly captures.

Peak exchange has been reported experimentally,4 as seen
in Fig. 8�a�. Figure 8�b� shows an orthodox simulation of the
experiment. One can see close qualitative and quantitative
agreements between the experimental data and the theoreti-
cal simulation. The conductance peaks have similar magni-
tudes, and the exchange of the peak asymmetry occurs at
−3.75 V in both graphs. The evident validity of the orthodox
theory in this case demonstrates its ability to capture excita-
tion features, as long as the features can be linearly approxi-
mated.

V. LIMITATIONS OF THE ORTHODOX MODEL

Based on the success of the orthodox model in the previ-
ous section, it is tempting to conclude that molecules with
redox-active centers only exhibit incoherent superpositions
of excitations rather than well-resolved features. In this sec-
tion, we point out examples where the discrete excitation
spectrum can indeed play a noticeable role in molecular
transport experiments, making an orthodox theoretical treat-
ment quite inadequate.

Ultrasmall quantum dots can potentially exhibit both
charge and size quantizations.12 While charge quantization
shows up through a Coulomb blockade of zero-bias conduc-
tances, size quantization manifests as conductance peaks.38

Other quantum dot experiments routinely show Coulomb
diamonds with well-resolved excitation lines,39 such as those

FIG. 7. �Color online� Origin of exchange in asymmetry of conductance peaks: �a� and �b� Schematic of vicinity of charge degeneracy
point A in Coulomb diamond. Also shown are the corresponding energy diagrams at threshold. Notice a different set of threshold transport
channels between �a� and �b�. �c� and �d� State transition diagrams illustrating the different excitation spectra accessed on either side of the
charge degeneracy point A. �e� and �f� G-V plots for scenarios �a� and �b�. Notice the clear peak exchange as a result of accessing different
excitation spectra in either case.

FIG. 8. �Color online� �a� Experimental trace demonstrating
peak asymmetry exchange �Ref. 4�. Compare with Fock-space
model results in Figs. 7�e� and 7�f�. �b� Orthodox simulation repro-
ducing peak exchange observed in the experiments. The parameters
are R1=35 M
, R2=350 M
, C1=0.673 aF, C2=0.612 aF, CG

=0.0135 aF, Q0=−0.18e, and T=4.2 K.
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due to vibronic cotunneling40 and Kondo resonances,41

which would require special attention to individual excita-
tions rather than just their incoherent superposition. A re-
cently observed negative differential resistance �NDR� in
double quantum dots26 can, in fact, be explained in terms of

a triplet state with a significantly longer lifetime than other
states.20,26 Recent experiments performed on single molecu-
lar magnets not only show direct signatures of magnetic
excitations27,28 but also NDR effects due to spin selection
rules.28,42,43

Signatures of well-resolved excitations occur less fre-
quently in molecules due to their larger vibronic flexibility
and broadening, but they do show up occasionally through
fine structures in I-V, as seen in multiple experiments �see,
for example, Ref. 22 reproduced in Fig. 9�. For instance, the
gap between ground and first excited states, involving charge
addition or removal, is significantly greater than the gap be-
tween subsequent excitations involving charge reorganiza-
tion. In such a case, a brief plateau occurs at threshold and
persists until the first excitation is accessed, as discussed in
detail in Ref. 11. Experiments like these require keeping
track of individual molecular excitations using Fock-space
CB. The orthodox theory cannot even qualitatively match the
experimental data in Fig. 9, owing to its inability to incorpo-
rate size quantization effects and the associated discrete
spectra. From Eq. �4�, it is clear that outside of the zero-
conductance region and excluding jumps due to changes in
n0, conductance values in orthodox theory must remain con-
stant, with a value of R1 /R2C�. The orthodox theory can
capture a plateau, and it can also capture a linear rise, but it
does not seem to capture both in the same I-V curve. Figure
9�c� shows the best attempt at modeling the experimental
data in Fig. 9�a� within the orthodox theory; the plateau fol-
lowed by a linear rise seems hard to duplicate.

A second limitation of the orthodox model comes in its
treatment of gate voltage. Even though it effectively modeled

FIG. 9. �Color online� Limitation of orthodox model: �a� Experi-
mental trace �Ref. 22� �reprinted with permission� showing fine
structure. �b� The fine structure in I-V’s, result from keeping track
of excitations explicitly within the Fock-space CB model. �c� An
orthodox calculation merely maintains the same slope between
charge addition jumps, thus may not reproduce any fine structure.

FIG. 10. �Color online� Gate-voltage dependence of I-V curves in the orthodox theory. Blue arrows indicate the direction of movement
of the onset voltages with increasing gate voltage. The four plots correspond to the four possible onset combinations: �a� a jump onset at
negative bias and a linear onset at positive bias, for which the I-V conductance gap widens with increasing gate voltage; �b� a linear onset
then a jump onset, with the gap narrowing around zero-bias; �c� two linear onsets, which corresponds to a translation of the I-V curve: and
�d� two jump onsets, which correspond to a translation in the opposite direction of �c�.
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the data in Figs. 5, 6, and 8, there again exist experimental
features that the orthodox theory cannot even qualitatively
model. Looking at Eqs. �5� and �6�, one can see that a change
in gate voltage causes a translation in the Coulomb blockade
threshold voltages; a similar effect, although in the opposite
direction, is seen for the voltage limits at which n0 changes.
Figure 10 shows how an orthodox I-V curve changes with
gate voltage for the four possible onset combinations—
which come from having linear or jump onsets at positive
and negative biases. The scaling of the conductance gap in
Figs. 10�a� and 10�b� successfully explained the experiments
in Figs. 5 and 8. However, for experiments with symmetric
onsets �Figs. 10�c� and 10�d��, one can see that the orthodox
theory predicts an overall translation in the I-V curve with
gate voltage. One would think that changing the gate voltage
would only shift the conducting level closer to or further
from the bias window, thereby narrowing or widening the
I-V curve, respectively. Indeed, experimental evidence dem-
onstrates such narrowing,7 and the Fock-space model cap-
tures that quite easily. The orthodox theory could not match
this trend even qualitatively.

VI. DISCUSSIONS

A proper treatment of individual molecular excitations
may seem rather academic at this point; however, there could
be important experimental features requiring a proper quan-
titative theory as transport spectroscopy of molecules be-
comes feasible.44 In fact, a possible explanation for molecu-
lar NDRs45,46 could necessitate, keeping track of excitations
in a donor-acceptor molecular system.20 Small molecules
could function as tunable quantum dots with high single-
electron charging energies. Molecular dots coupled to tran-
sistor channels can be important for the detection, character-
ization, and manipulation of individual spin qubits,44 with
the transistor conductance providing a means of electronic
readout.47 The large charging energies could allow redox-
active molecules to operate as storage centers for memory.48

Rectification could be important in this context to avoid
parasitic pathways in cross-bar logic architectures.49

The accurate treatment of well-resolved excitations is cru-
cial in the above examples of engineered molecular scatter-
ing. The price paid, however, is the loss of simplicity that
orthodox theory provided. Instead, we will need a major im-
provement in computational algorithms to handle the expo-
nential scaling of the Fock space, practical ways to identify
the most relevant configuration interaction matrices, inclu-
sion of interference between degenerate states using a den-
sity matrix, as well as a formal treatment of broadening of
the many-particle states, which can allow nondegenerate
states to interfere as well.29 Needless to say, there is enor-
mous room for theoretical and computational activities in
this domain and for novel device operational principles aris-
ing out of it.

VII. CONCLUSION

In this paper, we provided a detailed discussion of trans-
port under contact induced asymmetry, keeping the theoreti-
cal interpretation of experimental features in mind. We out-
lined the different physical origins of asymmetric transport
features and the crossover between the NEGF-based SCF
limit and the Fock-space-based CB limit. We also showed
that although Fock-space CB models allows us to explain the
excited state dynamics of a multiorbital molecular dot and
various transport signatures11 seen in notable experiments,3

such characteristic CB signatures, namely, gate dependent
conductance peaks and the flipping of their asymmetry, can,
in fact, be explained with a simpler “orthodox” model23–25 as
well. This model ignores individual excitations in favor of an
incoherent sum. This approach is extremely advantageous as
opposed to the computationally intensive Fock-space ap-
proach based on an exact diagonalization of a many-body
Hamiltonian. Finally, the limitations of such a simplification
were discussed using notable exceptions to well-resolved
Fock space excitation spectra that need careful attention.
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